Sources of ambiguity in nucleic acid sequence alignment

W.C. Wheeler

Department of Invertebrates, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024-5192, USA

Summary. The discussion of molecular sequence alignment is becoming more prominent in studies of molecular systematics and evolution. As the basis for initial homology statements, alignment is crucial to comparative molecular biology. Although fundamental, alignment is not a process which necessarily yields objective, precise results. Ambiguities can appear in alignment due to a number of factors. Three such sources of ambiguity are discussed here: these are ambiguity in the establishment of alignment parameters, pair-wise order and individual "path" variation. The first arises from the necessary but empirically untenable assumptions of gap costs and other factors which are required to align sequences objectively. The second is due to the possible existence of non-unique solutions to the same alignment parameters in heuristic and exact solutions. The third is a result of multiple optimal paths within single alignments, potentially generating huge numbers of equally costly but unique alignments. Some of the problems with and several possible solutions to the difficult situation of non-unique alignments are discussed.

Introduction

Alignment of sequence data is the fulcrum of molecular systematics. All evolutionary analyses of molecular sequence rely on the series of correspondences that comprise an alignment. In systematics and evolution, these correspondences are the putative homologies tested by cladograms. Cladistic analysis then gives us the ability to discern historical relationships based on the discrimination of homology and non-homology or homoplasy. However, these higher level operations are dependent entirely on the foundation alignment. Even when alignments are generated automatically, as opposed to "by eye," untested assumptions and ambiguities can creep into the alignment process. Since alignment is so basic, these same assumptions and ambiguities permeate subsequent operations, holding them subject to the same forces encountered by earlier phases of analysis.

Sources of ambiguity

Three sources of ambiguity are discussed here: "parameter" variation, "order" variation, and "path" variation. Each of these factors can affect
the correspondence between and among sequence positions. Most of the
discussion here will be limited to nucleic acid sequence data, but the
arguments apply equally to amino acid data. There is an additional
source of uncertainty in the alignment of phylogenetically interesting
numbers of taxa and that is the operational necessity to deal with
heuristic solutions. As with phylogenetic analysis, the algorithmic
method to find the "best" or optimal alignment is known. The method
is an extension of the two-dimensional Needleman and Wunsch proce-
dure (Needleman and Wunsch, 1970). This well defined algorithm is
almost entirely intractable for large numbers of sequences requiring
storage and computation increasing by a factor of the length of each
successively added sequence (n^m, where m is the length of the sequences
and n the number of sequences). This extreme level of computational
complexity necessitates the use of heuristic shortcuts to find workable
solutions, thus adding an extra degree of fog to the analysis. This
problem is not fatal, however. Phylogenetic analysis has faced this
situation for some time and has been able to progress. The ambiguities
discussed here apply to both heuristic and exact solutions.

The first source of ambiguity in sequence alignments comes from the
necessity of specifying the relative costs of the events required to
transform one sequence into another and create the alignment correspon-
dences. The most obvious of these are insertion-deletion and base change
costs. The insertion-deletion or "gap" value is the cost (in some optimality
currency) of the insertion or deletion of a gap or base. This must occur
when sequences are unequal in length. The base change cost is the debit
incurred in the transformation of one nucleotide (amino acid) into
another. The sum of base changes and gap events multiplied by their
individual costs is the total "cost" of the alignment. The set of correspon-
dences which minimizes this cost is the best alignment based on those
parameter values. The ambiguity is derived from need to specify, or
assume, these costs a priori. Different cost regimes can yield different
alignments (Fitch and Smith, 1983; Waterman, 1992 which can in turn
imply different schemes of phylogenetic relationship (Wheeler, in press).
Since there is no way to determine directly the appropriate gap or change
values through measurement, more or less arbitrary assumptions must be
made (although they can be limited to some extent - Wheeler, 1993).

When multiple alignments are created, whether by exact or heuristic
means, the notion of alignment order comes into play. Heuristic multi-
ple alignment solutions are built typically from a series of ever larger
pairwise alignments. Initially, two sequences are aligned and this result
aligned to a third, maintaining the relative alignment between the first
two ("once a gap, always a gap" - Feng and Doolittle, 1987, 1990) and
so on. Any such alignment is obviously order dependent. A different
order of alignment might well yield a different alignment. Even when
some explicit optimality criterion, such as parsimony, has been chosen,
multiple orders may yield unique yet equally optimal multiple solutions.
This situation gives rise to the multiple-alignment problem discussed by
Gatesy et al. (1993) and Wheeler et al. (in press). The same data and
parameter assumptions yield non-unique solutions. This is analogous to
the problem of equally parsimonious cladograms found in almost all
phylogenetic analyses. Most systematic data imply more than one most
parsimonious scheme of relationships. The set of solutions may contain
topologies which are almost entirely identical or highly divergent. The
same situation can occur in alignment. One solution to the multiple order
problem might seem to be simultaneous alignment of all sequences, but
even if possible, this would be no escape. Exact methods such as that of
Sankoff and Cedergren (1983) rely on a parsimony based alignment cost
function. In order to calculate the cost the scheme of phylogenetic
relationships among the sequences must be "known" or at least specified
a priori. If the phylogenetic relationships are unknown or non-unique,
the cost function would vary with each potential topology, potentially
yielding non-unique multiple alignments.

The third source of alignment uncertainty discussed here is path
variation. Path variation occurs when the alignment algorithm can follow
multiple paths through the alignment space, yielding the potential for
huge numbers of equally costly (or optimal) solutions. Any NW based
alignment, irrespective of dimension, follows a similar procedure. A
space is created bordered by the sequences to be aligned. If only two
sequences are compared, they constitute a plane; three sequences are a
cube, and so on to higher dimensions. The cells of this space are created
by the matching and mismatching of the input sequences. Alignment
starts at one corner, top left, and proceeds through the space attempting
to find the path of lowest cost (or highest benefit). The "best" path is the
alignment. Path variation occurs when the road diverges, so to speak.
When the alignment can either insert a gap or match the bases with equal
cost the number of solutions doubles. This can happen repeated,
resulting in a large number of equally costly, but different alignments.

Each of these sources of ambiguity may result in multiple solutions to
the same alignment problem. In the following sections, the NW al-
gorithm and some of its elaborations will be described, especially within
the framework of parsimony. These methods will then be applied to a
situation likely to generate multiple solutions. In the final section, several
as yet untested methods that attempt to accommodate multiple solutions
will be discussed.

The basic algorithm

The algorithm initially proposed by Needleman and Wunsch (1970) is
a dynamic programming string match algorithm applied to biological
sequences, but it can be used more generally to determine correspondences between any ordered series of objects. There are five parts to the algorithm: 1) specifying the cost function, 2) laying out the alignment matrix, 3) initializing the matrix elements, 4) wave front updating the matrix elements, and 5) tracing back. As an example, we may be presented with two short sequences, "ACGT" and "AGTT." The first step is to establish the cost parameters. Initially, they may be set to a gap cost of 10 and a mismatch cost of 1. (The description which follows is based on a minimal cost optimum as opposed to the maximum benefit described by Needleman and Wunsch. The details will differ from their description, but with suitable modulatin of the cost function the results are identical.) A 5 x 5 matrix is then created (Fig. 1). These axes are one more than the lengths of the sequences to allow for initial or leading gaps. The first row and column are labeled 0th and each element is assigned an initial value of 0 (Fig. 2). The remaining elements from row and column 1 until the end of the matrix are assigned 0 if the corresponding bases from the sequences match and 1 (the mismatch cost) if they do not (Fig. 3). The matrix is now entirely initialized and the heart of the algorithm begins.

The algorithm returns to element (0, 0) in the upper left corner and updates each row and column in turn by realizing that in order to get to element (i, j) only three other cells need be examined (if they exist): those above (i, j - 1), to the left (i - 1, j), and diagonally above and to the left (i - 1, j - 1) (Fig. 4). A path from the diagonal cell implies a correspondence between the two bases whether they match or not, whereas the left and upper cells imply gaps in either sequences I or II, respectively. This simple dependency is due to the assumption of the method if base i of sequence I corresponds to base j of sequence II, then

\[
\begin{array}{|c|c|c|c|}
\hline
i & j & i & j \\
\hline
0 & 0 & 0 & 0 \\
A & 0 & 0 & 1 \\
G & 0 & 0 & 1 \\
C & 0 & 0 & 1 \\
T & 0 & 0 & 1 \\
\hline
\end{array}
\]

Figure 1. Initial comparison matrix for two four-base-pair sequences.

Figure 2. Comparison matrix with initialization of first row and column complete.

\[
\begin{array}{|c|c|c|}
\hline
\vline & \vline & \vline & \vline \\
\hline
i & j & i & j \\
\hline
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\hline
\end{array}
\]

Figure 3. Comparison matrix with initialization complete.

Figure 4. Cells which may lead to cell (i,j) during alignment.

\[i + l(i \geq 0)\] must correspond to a base \[j + l(j \geq 0)\]. The first elements are those in row 0, the topmost. In these cases, only the row to the left will exist, hence, the algorithm proceeds from cell (0, 0) to the right (0, 1) and so on, until all the elements have been updated. The first cell to undergo this process is cell (0, 1). Following the alignment logic, the only way to get to this cell is via a gap in sequence I. In this case, it is a leading gap which precedes any of the bases in sequence I. The new value of this cell, (1, 0), is calculated by adding two numbers. The first is the value of the preceding cell (in this case, (0, 0)) and the second is the cost of inserting the gap to get from (0, 0) to (0, 1). Hence the new value is \[0 + 10 = 10\]. In addition to noting the new cost of the cell, the direction from which it came (here, left) is also noted (Fig. 5). The process is repeated for the entire row, in each case basing the new cell value on the one immediately to its left plus the gap cost (Fig. 6). This same operation is performed on the first column. Here, the gaps implied are in sequence I (leading gaps before sequence II, Fig. 7).

With the first row and column completed, the procedure moves down and over to row and column 1 beginning with cell (1, 1). Now that there are cells above, left and diagonally, the calculation of the new cell values is more complex. Three types of events must be considered: 1) a gap in sequence I, 2) a gap in sequence II, and 3) a correspondence between sequences I and II. The cost of the new cell will be the lowest of the three possible paths to the cell. Hence, the cost for each of the three paths is first calculated. The cost for a gap in sequence I is the sum of the values in cell (1, 0) and the gap cost for a total of 20. The cost of a gap in sequence II is in the same way the sum of cell (0, 1) and the gap cost for 20 again. In calculating the cost of the diagonal path, there is no gap penalty. The only costs are those in cell (0, 0) and (1, 1), summing to 0. The three paths, then, offer costs of 20, 20, and 0 with
the diagonal as the lowest. The diagonal path is chosen, noted in the matrix, and cell (1, 1) given its updated cost (Fig. 8). This is repeated for all cells until the matrix is completely updated (Fig. 9). This is called a "wavefront" process because the update follows like a wave over the matrix. (A procedure similar to that for the first row and column can be employed to account for trailing gaps in the row and column.)

![Matrix update](image)

Figure 7. Update of the first column. The first column (signifying leading gaps in the top sequence) is completely updated with costs and directions.

The final step is the trace-back. During the wavefront cell updates, not only the new values of the cells were noted but also the lowest cost path (direction) to those cells. In the trace-back phase, the passage through the matrix is reversed, starting at the lower right corner. The algorithm moves back up and left through the matrix, following the lowest cost path notations previously laid down. Each time the trace-back moves directly up or left, gaps are inserted in sequences I or II, respectively. Each diagonal move is a correspondence between bases. The trace-back continues until cell (0, 0) is reached and the alignment is complete (Fig. 10). In this case there were two base mismatches and no gaps required to align the sequence with a cost of 2.

Extension to multiple sequences

The two sequence or pair-wise NW algorithm can be generalized into an N-sequence algorithm quite easily. Without going into too much detail, instead of a plane matrix of two dimensions, the algorithm would encounter a cube for three sequences and higher dimension alignment spaces as the data set grows richer. Instead of requiring approximately n^2 matrix elements, n^n would be required (in sequences of length n). A data set with 100 sequences of length 1000 (which is certainly reasonable in today's empirical climate) would require (in the worst case) 10^{300} elements. When updating cells, the two-dimensional case examines three other cells. For three sequences this number jumps to seven, for four sequences 15 must be examined to account for all the possible combinations of gaps, matches, and mismatches. Generally, $2^n - 1$ cells would
need to be considered (m sequences) or for 100 sequences approximately 10^{400} cells would be taken into account for each of the 10^{300} elements. This is not going to happen easily.

The generalization of the cost function also presents a challenge. Whereas a change from A to C or a gap is a simple cost when only two or three sequences are examined, at data sets of four or more sequences the problem of phylogeny becomes necessarily interwoven. Four taxa may be arranged phylogenetically in three different ways (if rooting is unimportant). The distribution of bases and gaps at an aligned position can have different implied cost on different topologies (Fig. 11). Furthermore, aligned positions need not agree in their minimal cost topology favoring different taxonomic arrangements. For these reasons, Sankoff and Cedergren (1983) proposed using the principle of parsimony to determine multiple (>2 sequence) alignments. Sankoff requires, however, that the scheme of relationships be “known” or at least established a priori. Rarely, if ever, is this the case. In most cases, the reason for aligning the sequences in the first place is to determine these relationships. Even if there is some prior knowledge of relationships, systematic inference is always a provisional operation, awaiting more data and revision. The inability to specify evolutionary topologies before alignment can be ameliorated by performing the alignment repeatedly for the different possible topologies, but since the number of these increases combinatorially ($\#$ topologies $= \prod [2i - 5]$; where i goes from 4 to the number of taxa and the trees are bifurcating and unrooted), this would be an exhausting procedure.

Due to these computational problems, a great diversity of heuristic methods has been proposed to achieve reasonable solutions given manageable resources. The first simplification is the reliance on pair-wise (two-dimensional) alignments. To avoid the huge complexities of true simultaneous multiple alignment an alignment “tree” is specified to allow the ordered accumulation of aligned sequences into a multiple alignment. Sequence I is aligned with sequence II and the resulting alignment with sequence III, and so on (Fig. 12). The methods differ in how this “tree” is determined and in how or whether the tree interacts with the alignment in any way.

Feng and Doolittle (1987, 1990; adapted by Higgins and Sharp, 1988, 1989) start with pairwise alignments. A distance measure is calculated from these pairwise alignments and a Fitch-Margoliash (Fitch and Margoliash, 1967) tree determined for these distances. The phylogenetic topology yielded by the Fitch-Margoliash analysis determines the order of alignment (Fig. 13). This process is taken one step further by Konings et al. (1987) and Hein (1989, 1990). In these procedures, the alignment resulting from the first round is cranked through again. This time, the distance tree is derived from the multiple alignment of the first pass. The realignments are repeated until the alignment order and derived phylogeny converge.

Absent from these methods is any criterion of optimality. The algorithms simply produce a result (Feng and Doolittle, 1987, 1990) or have a stopping rule. Furthermore, each of these methods relies at some point on distances, hence they inherit all the shortcomings of that form of analysis (Farris, 1981, 1985, 1986). Hein (1987, 1990) adds a parsi-
other has nucleotides. Additionally, to create an entirely logical and consistent parsimony-based alignment, the same cost function which is used in the Needleman-Wunsch procedure must be used in the construction of cladograms from these alignments. Gaps (with the exception of those which result from the mechanics of sequencing) are then a fifth state (after A,C,G,T,U). The cost of transformation between a gap and the other states in cladogram construction is determined by the parameters of the alignment.

The MALIGN program

Software now exist to automatically align molecular sequences (Feng and Doolittle, 1987, 1990; CLUSTAL-Higgins and Sharp, 1988; Hein, 1989, 1990; MALIGN, Wheeler and Gladstein, 1993) so there is really no longer a need for “eye-ball” alignments. Through the use of these programs, the factors which affect alignment correspondences can be explored. Gap costs can be varied and multiple alignment solutions can be generated, at least with some of them. This chapter will use MALIGN (Wheeler and Gladstein, 1993; Wheeler and Gladstein, in press) to explore and demonstrate these effects. MALIGN offers a heuristic multiple alignment solution based on sequential pair-wise NW. That is, the program aligns the sequences on some “tree” where a two-dimensional alignment is performed at each node. For n taxa, n – 1 pair-wise alignments are performed. MALIGN will manipulate the alignment “tree” order through the types of operation found in phylogeny reconstruction programs (Farris, 1988; Swoford, 1993). In this way, the program can generate many (or effectively all) multiple alignments and save the single or multiple “best.” MALIGN defines the “best” or optimal alignment to be that which generates the most parsimonious cladogram, whatever the topology. Hence, the alignment “tree” or trees need not conform to the evolutionary tree implied by the alignment. Facilities exist in the program (as in others) to vary alignment parameters such as gap cost and explore the generation of non-unique optimal alignments.

Sources of non-unique alignments

Parameter variation

The most important factor in determining an alignment is the cost function used to assess its quality. This model may contain any number of factors (parameters) which relate to DNA (or protein) change. Perhaps the most prominent of these is the gap cost. As described
above, this value describes the cost of the insertion or deletion of a base within the sequence. The gap cost is most frequently expressed in relation to the cost of a base change, hence the term gap cost ratio. When gap costs are low in relation to base transformations, the alignments tend to be somewhat diffuse, with many gaps and relatively few base transformations. When gaps are costly, on the other hand, the alignments are tighter, shorter, and involve much more base change. Obviously, these two situations can have vastly different phylogenetic implications. Differentiation can be made among types of gaps as well. Gaps can have lower costs if they are leading or trailing, or occur in contiguous strings. The number of gaps of any length can be minimized as well as gaps which violate reading frames.

As an example of the effects of gap cost, the two simple sequences aligned above, “ACGT” and “AGTT” can be aligned under different cost regimes (Fig. 13). When gaps are more expensive than base changes, alignment A is favored, while B is chosen when gaps are cheap. Interestingly, when gaps and changes are assigned equal cost, alignments A and B are equally costly as well.

Another factor which may affect alignment is the model of base change specified in the cost. All base transformations may be treated as equally informative or special weight may be given to some over others. One case of this would be the specification of transition-transversion ratios (Fig. 14). Alignment A implies (along with two gaps) one transition (C→G) and one transversion (G→T), whereas alignment B implies two transversions (G→C and G→T).

Other less commonly employed features include codon based weighting and secondary structure considerations. Specific to protein coding regions, coding weighting comes in two forms. The first of which limits, or at least heavily biases alignment gaps to groups of three. Other lengths would presumably violate reading frames. A second codon effect could come in the weighting of certain rare or unique codons which may reflect higher order protein structure or function. The correspondences

Alignment A

\[
\begin{align*}
A & \rightarrow C & G & T \\
AG & T & T - \\
\end{align*}
\]

Alignment B

\[
\begin{align*}
A & \rightarrow C & G & T \\
AG & T & T \\
\end{align*}
\]

Figure 14. Alignments of two taxa showing different numbers of transitions and transversions. Alignment A implies two transversions while alignment B implies one transition, one transversion, and two gaps.

among cysteine residues are frequently given high weight in protein alignment.

Secondary structure models can function analogously to codon weights for RNA molecules. Bases changes or insertions which are non-compensatory may affect the secondary and higher order structure of the mature molecule. Alignment taking hairpin loop and fold structures may yield different results than those based solely on base-to-base comparison (assuming the secondary structure is known).

Multiple equally parsimonious alignments

When computers were first employed to find least cost cladograms, in addition to the novel (and sometimes disturbing) nature of the new solution, it was found that there were often multiple solutions. Even relatively “clean” data can generate thousands of phylogenetic solutions. It should come as no surprise, then, that this also occurs with automated alignment. As shown by Gatesy et al. (1993) and Wheeler et al. (in press), the same gap-to-change ratio can generate non-unique solutions. Each one of these solutions can (but not necessarily will) imply different phylogenies for the taxa.

In the same, simple example above, “ACGT” and “AGTT,” when gaps and base changes are equally costly (Fig. 13), alignments A and B are equally costly. When multiple alignments are created through sequential pair-wise alignments, several alignment “trees” may yield unique and equally costly alignments. This problem is not limited to heuristic solutions, however. In the Shankoff procedure, the tree used to determine alignment costs may be unknown. When this is the case, several phylogenetic topologies may yield equally costly alignments.

Multiple equally parsimonious “paths”

As described in the section on the NW algorithm, a cell in a pairwise alignment can be reached from three other cells. The choice is based on the cost of each event, a mismatch or gaps in either of the two sequences. In many cases, two or all three may be equally costly events. This means that several alignments are equally costly at that region. The number of possible, equally costly alignments can be huge since they would multiply at each fork. This situation also pertains to true n-dimensional alignments since they also require path decision based on costs from abutting cells (in the general case there are $2^n - 1$ of them for m sequences).

Although there may be a huge number of these alignments, their divergence from the diagonal, perfect correspondence is bounded. If the
insertion of gaps is favored (when a gap or base change can take place with equal cost), then an ellipse which contains all possible alignments can be described and the "bounding" alignments produced. Within this ellipse, alignments which favor contiguous, or random choices exist.

The data of Whiting and Wheeler (1994) were subjected to this sort of path variation. In each case, the gap change cost ratio was 2 to 1, that is gaps cost twice as much as base changes. Here, 23806-base-pair insect rDNA sequence were aligned repeatedly. In each case, arbitrary decisions were made when equally costly paths through the matrix were found. In some cases, different types of gaps were favored, in others random choice was made. The ten alignments yielded different phylogenetic conclusions (Fig. 15). Although the different paths yield identical costs in the two-dimensional case, when these alignments are aligned to other sequences the results are not necessarily equally costly. This can be most readily seen in the placement of gaps. When gaps are favored over base changes when equally costly, the gaps in the multiple alignments tend to line up better than otherwise (Fig. 16), and yield more resolved cladograms. This may be due to the lack of "scattered" gaps when contiguous gaps are favored. Interestingly, although five different runs of "random" path were made, each yielded the same phylogenetic conclusions.

Solutions

This chapter has presented some of the factors which can cause sequence alignment to yield ambiguous, non-unique, results. As more data sets are investigated more thoroughly, these multiple alignment solutions will press even more heavily upon us. What can be done? In recent years, much space has been devoted to dealing with ambiguity in phylogenetic analysis in systematics journals. Most methods have been proposed to either accommodate or choose among multiple equally optimal solutions. Methods will now be needed to deal with the same issue in sequence alignment.

The analysis of these multiple equally optimal alignments depends heavily on the interpretation given the alignments. Some seem to feel

Figure 15. Phylogenetic results of alignments of insect 18S rDNA when different equally costly "paths" are favored. Phylogenetic reconstructions were performed using Farris' Homaló (Farris, 1988). Alignments favored: (A) matches (there were four unique alignments each of which yielded the same strict consensus cladogram), (B) contiguous gaps, (C) discontinuous gaps, (D) gaps in the shorter sequence, (E) gaps in the longer sequence, (F) random choice among equally costly alternatives (this topology resulted from each of five alignments). In each case the gap cost was 1 and the change cost 4. (These arrangements are not meant to be definitive, and none of them are absurd. They are merely shown to demonstrate the variety of phylogenetic conclusions which can occur from different alignments.)
Figure 16. Three alignments of 18S rDNA. The sequence data of Whiting and Wheeler (1994) are used to demonstrate variation in alignment due to “path” selection. In the first alignment (A), matches are favored over gaps when equal cost would result from either. The second (B) favors contiguous gaps, that is inserts a gap if one already exists. The third alignment (C) favors discontinuous gaps, favoring gaps when gaps do not already exist.
that alignment ambiguities (positional correspondences which vary among alignments) are a statement of error. This error could be in the assumptions of alignment or in the data themselves in that they are "too variable" for the question at hand. The logical direction of this thinking is to remove or at least downweight nucleotide positions which do not align consistently.

In their chapter on computer packages which aid evolutionary sequence analysis, DeSalle et al. (this volume) discuss two procedures which lessen the impact of alignment-ambiguous sites (see Gaty et al., 1993) sites: CULL and ELISION. Briefly, if alignment ambiguous sites are thought to be totally unreliable, they can be removed. This is what CULL does. Investigators have reported removing "unalignable" regions of molecules many times. Unfortunately, in removing all disagreeing positions, most of the signal seems to be removed as well. The properties of such harsh weighting (0 or 1) are discussed more fully by Gaty et al. (1993).

A second procedure along the same lines as CULL is ELISION (Wheeler et al., in press). Like CULL, ELISION distrusts alignment-ambiguous nucleotide positions, but to a lesser extent. In this context, the several alignments are combined into a single "grand" alignment. This is then analyzed phylogenetically. By combining the alignments, positions which align consistently are given relatively higher weights than are those which are less stable. ELISION seems to maintain much more of the original signal of the alignments than does CULL. ELISION is in its continuous weighting based on internal consistency, like Successive Approximations Weighting (SAW), originated by Farris (1969) as a method for character weighting.

An entirely different approach to multiple sequence alignment problems is found in congruence based procedures. One such procedure (Wheeler, in press), uses the congruence between external data (morphology, biogeography) to choose the "best" among several multiple alignments. An alignment would be chosen which maximized some congruence measure between the sequences at hand and other, preexisting data. On the other hand, from a purely phylogenetic perspective, one might accept only those groups implied by all alignments (akin to CULL).

Conclusions

The intense discussion of the methods by which solutions are generated which has characterized cladogram construction for so long is now coming to sequence alignment. As with phylogenetic analysis, the results can sometimes not be entirely resolved. Only by embracing this phenomenon, however, can we hope to understand it and its implications for phylogeny.
Computational problems in molecular systematics

R. DeSalle, C. Wray and R. Absher

1Department of Entomology, American Museum of Natural History, New York, NY 10024, USA
2Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA
3Department of Biology, Yale University, New Haven, CT 06511, USA

Summary: The development of extremely powerful computer programs and the ready availability of microcomputers has revealed several computational problems with data analysis. These problems occur in the handling of systematic data in general and molecular systematic data in particular. This paper examines three areas of controversy in molecular systematics resulting from increased computer power. We start by examining the first step in DNA sequence analysis, the establishment of homology via sequence alignment. Next we examine several problems in phylogenetic analysis that have arisen in the last few years due to use of the PAUP (Swofford, 1991), HEINORG (Farris, 1988), and PHYLIP programs. These problems include limitations on the number of taxa examined in a given analysis and the accuracy of the parsimony trees in such analyses. The final subject is an examination of programs used for assessing tree robustness. We concentrate on certain programs (such as MALIGN (Wheeler and Gladstein, 1993), PAUP (Swofford, 1991), HENNIG86 (Farris, 1988) and PHYLIP programs), but similar comments about other programs could also be made.

Sequence alignment

The establishment of homology of DNA sequence positions has been recognized as a central problem in modern systematics (Fitch and Smith, 1983; Feng and Doolittle, 1986; Mindell, 1991). The basic approach used in sequence alignment is the dynamic programming approach of Needleman and Wunsch (1970). Several computer algorithms have been developed using various criteria to accomplish the alignment (Sankoff et al., 1973; Feng and Doolittle, 1987; Higgins and Sharp, 1988; 1989; Konings et al., 1987; Hein, 1989, 1990; Mindell, 1991; Wheeler and Gladstein, 1993). These approaches are highly dependent on the initial parameters used in the alignment procedure. As Wheeler describes in this volume, most alignment procedures for sequences are based on the costs assigned for assuming a base or amino acid change versus the insertion of a gap. These are referred to as change and gap costs respectively. It has been demonstrated that these parameters (Fitch and Smith, 1983; Waterman et al., 1992; Gatesy et al., 1993) as well as the order in which sequences are read into a sequence alignment run (Lake, 1991) affect the final alignment in a substantial manner.